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Agenda
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• Introduction and overview 
• What is data-centric AI (DCAI)? Why is it needed? Challenges? Overview of the methods?

• Training data development 
• How to properly prepare the training data?
• How to efficiently and effectively label data?

• Inference data development
• How to construct evaluation data to provide model insights?
• How to engineer input data to unlock model capabilities?

• Data maintenance & DCAI Benchmark
• What efforts have been made or are in progress to support DCAI?

• Data bias and fairness
• Bias/fairness issues in data and the corresponding debiasing methods

• DCAI in industry and summary
• What are the challenges in industry? How we have addressed them? What remained to be 

done? What are the future directions?
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Introduction and Overview

Part 1
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What is data-centric AI? 
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Data-centric AI (DCAI) is the discipline of systematically engineering the data used to build an 
AI system.  – Andrew Ng

Pitfall: The concept “data-driven” differs fundamentally from “data-centric”. “Data-driven” only 
emphasizes the use of data to guide AI development, which typically still centers on developing 
models rather than engineering data.

[1] Zha, Daochen, et al. Data-centric AI: Perspectives and Challenges. SDM, 2023.
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Need for data-centric AI

6

Many major AI breakthroughs occur only after we have the access to the right training data.

Year AI Breakthrough Dataset

1994 Human-level spontaneous speech recognition Spoken Wall Street Journal 
articles and other texts (1991)

1997 IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess 
games (1991)

2012 AlexNet, one of the first successful CNNs ImageNet corpus of 1.5 million 
labeled images (2010)

2021 AlphaFold, AI for science Annotated protein sequence 
(2017)

Now Large language models Large text data

[1] http://www.spacemachine.net/views/2016/3/datasets-over-algorithms
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Need for data-centric AI
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Data is the driving force when model design becomes mature.

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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Need for data-centric AI
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When the model becomes sufficiently powerful, we only need to engineer prompts (inference 
data) to accomplish our objectives, with the model being fixed.

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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Need for data-centric AI
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The success of Segment Anything is largely attributed to a annotated dataset with over 1 
billion masks, which is 400x larger than the existing one. Segment Anything has three stages 
of labeling: assisted-manual stage, semi-automatic stage, and fully automatic stage. 

[1] Kirillov, Alexander, et al. Segment anything. Arxiv, 2023.
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DCAI Initiatives across Academia and Industry
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The number of research papers about DCAI is growing exponentially.

Tendency of DCAI over the past five years. The statistics are collected by querying Google 
Scholar with the exactly matched phrase “data-centric AI”.

[1] Zha, Daochen, et al. Data-centric AI: Perspectives and Challenges. SDM, 2023.
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DCAI Initiatives across Academia and Industry
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Data-centric AI competition: It asked participants to iterate on the dataset only to improve 
the performance. The competition attracts 486 submissions.
Website: https://https-deeplearning-ai.github.io/data-centric-comp/  

https://https-deeplearning-ai.github.io/data-centric-comp/
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DCAI Initiatives across Academia and Industry
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MIT course : Introduction to Data-Centric AI
Website: https://dcai.csail.mit.edu/

https://dcai.csail.mit.edu/
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DCAI Initiatives across Academia and Industry
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Event: The future of data-centric AI
Website: https://future.snorkel.ai/

https://future.snorkel.ai/
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DCAI Initiatives across Academia and Industry

14

AI Startups: Lots of data-centric AI companies are rising. To name a few…

Landing AI Snorkel AI Scale AI
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A Data-centric AI Framework
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Pitfall: While “data-centric AI” is a new concept, it is not completely new. Many tasks (e.g., 
data augmentation and data reduction) have been studied since decades ago. At the same 
time, many new tasks and ideas are also emerging.

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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A Data-centric AI Framework
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Research question 1: How can we construct the right training data to improve the 
performance?

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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A Data-centric AI Framework
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Research question 2: How can we construct the right inference data to evaluate the model 
or probe knowledge from the model? 

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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A Data-centric AI Framework
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Research question 3: How can we ensure the data is right in a dynamic production 
environment?

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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DCAI Trend: Automation & Collaboration
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[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.

Automation & Collaboration: To keep pace with the ever-growing size of the available data, 
we need more efficient algorithms to automate the process or incorporate human knowledge.
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DCAI Trend: Blurred data-model boundary
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Foundation models become a form of data or a “container” of data: When model 
becomes sufficiently powerful, we can use models to generate data.

[1] Tang, Ruixiang, et al. "Does Synthetic Data Generation of LLMs Help Clinical Text Mining?." ArXiv, 2023.
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DCAI Trend: Blurred data-model boundary
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Foundation models become a form of data or a “container” of data: When model 
becomes sufficiently powerful, we can use models to generate data.

[1] Yuan, Jiayi, et al. LLM for Patient-Trial Matching: Privacy-Aware Data Augmentation Towards Better Performance and Generalizability. ArXiv, 2023.
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Resources
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Learn more about DCAI before we delve into the detailed techniques.
Tutorial website: https://dcaitutorial.github.io/
Feel free to ask any questions!

Data-centric AI SurveyData-centric AI Perspectives GitHub Resources

https://dcaitutorial.github.io/
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Training Data Development

Part 2
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Outline for Training Data Development

24

1. Overview: training data development 

2. Techniques
● Data collection and labeling

● Data preparation, reduction, and augmentation

3. Case studies
● Training data development for LLMs

● Training data development for Graphs
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Need for Training Data Development 
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A. Data Collection B. Data Labeling

Creating the right (labeled) training data is imperative for machine learning models.

“Cat”

“Dog”
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Need for Training Data Development 
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C. Data Preparation D. Data Reduction E. Data Augmentation

Appropriate data pre-processing techniques are needed. 
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Data Collection
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• Common strategies
• Direct data collection: We directly collect data from the sources.
• Dataset discovery: Create new datasets by integrating the existing datasets.
• Data synthesis: Synthesizing data for training.
• Hybrid methods: Simultaneously using more than two of the above strategies.

• Things to keep in mind
• Data coverage: Can the created dataset cover different scenarios?
• Data size: Is the data of an appropriate size, neither too large nor too small?
• Noise: Is the collected dataset subject to noise?
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Data Collection
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Dataset discovery: As the number of available datasets grows, it becomes possible to 
amass the existing datasets of interest to construct a new dataset.

[1] Fernandez, Raul Castro, et al. Aurum: A data discovery system. ICDE, 2018.

Idea: We build a Enterprise Knowledge 
Graph (EKG) for datasets. Then use 
Source Retrieval Query Language 
(SRQL) to search for the datasets of 
interests. 
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Data Collection
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Data synthesis: In some scenarios, it is more efficient to synthesize a dataset that contains 
the desirable patterns than to collect these patterns from the real world.

[1] Lai, Kwei-Herng, et al. Revisiting time series outlier detection: Definitions and benchmarks. NeurIPS, 2021.

Example scenario: In anomaly detection, it 
is often hard to collect sufficient real 
anomalies since they can be extremely rare. 
Thus, researchers often insert anomaly 
patterns into anomaly-free datasets.

Example strategy: Modeling time series as 
a parameterized combination of trend, 
seasonality, and shapelets. Then different 
point and pattern-wise anomalies can be 
generated by altering these parameters [1].
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Data Labeling
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• Common strategies
• Crowdsourcing: Breaking down a labeling task into smaller and more manageable 

parts so that they can be outsourced and distributed to a large number of non-expert 
annotators.

• Semi-supervised labeling: Leverage a small amount of labeled data to infer the labels 
of the unlabeled data.

• Active learning: An iterative procedure that involves humans in the loop.
• Distant supervision:  Assigning labels by leveraging external sources.

• Emerging strategies
• Data programming: Inferring labels based on human-designed labeling functions.
• RL-based active learning: An emerging strategy that uses reinforcement learning for 

active learning.
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Data Labeling
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Data programming: We infer labels based on human-designed labeling functions.

[1] Zhang, Jieyu, et al. Wrench: A comprehensive benchmark for weak supervision. NeurIPS, 2021.
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Data Labeling
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RLHF: Reinforcement learning from human feedback, a key technique behind ChatGPT and 
GPT-4.

[1] Ouyang, Long, et al. Training language models to follow instructions with human feedback. NeurIPS 2022.
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Data Labeling
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Meta-AAD: Learning to select the most important data sample for querying humans with 
reinforcement learning

[1] Zha, Daochen, et al. Meta-AAD: Active anomaly detection with deep reinforcement learning. ICDM, 2020.
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Data Pre-processing

34

Automation/search becomes a trend in the data pre-processing pipeline.

[1] Cubuk, Ekin D., et al. Autoaugment: Learning augmentation strategies from data. CVPR, 2019.
[2] Zha, Daochen, et al. Towards automated imbalanced learning with deep hierarchical reinforcement learning." CIKM, 2022.
[3] Krishnan, Sanjay, and Eugene Wu. Alphaclean: Automatic generation of data cleaning pipelines. arXiv, 2019.
[4] Lai, Kwei-Herng, et al. Tods: An automated time series outlier detection system. AAAI, 2021.

Automated data augmentation [1] Automated data balancing [2]

Automated data cleaning [3] Automated pipeline search [4]
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Case Study: Training Data Development for LLMs
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Data quality impact the performance of LLMs regardless in pre-training or fine-tuning phases.

[1] Zhao,Wayne Xin, et al. A Survey of Large Language Models. ArXiv, 2023.

Human EffortLLMs Assistant 

OR



Data-centric AI Tutorial (KDD’23)

Case Study: Training Data Development for LLMs
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Creating proper data curation pipeline is crucial for LLM training/fine-tuning, especially in 
domain-specific LLMs. For example, in finance:

[1] Liu, Xiao-Yang, Guoxuan Wang, and Daochen Zha. "FinGPT: Democratizing Internet-scale Data for Financial Large Language Models." arXiv 2023.
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Case Study: Training Data Development for LLMs
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Creating proper data curation pipeline is crucial for LLM training/fine-tuning, especially in 
domain-specific LLMs. For example, in biomedical:

[1] Zhang, Kai, et al. "BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks." 
arXiv, 2023.
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Case Study: Training Data Development for LLMs
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Label Alignment provides a way to calibrate the performance of pre-trained LLMs.

Manual Labels LLM Labels Supervised Finetuning RLHF

Quality Check
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Case Study: Training Data Development for GNNs
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Motivation: The quality of input graph data plays a pivotal role in the performance of graph 
machine learning. Most research iterates the models, neglecting the importance of graph.

Graph Data GNN PredictionModel-centric

Graph Data GNN PredictionData-centric

Iterate

Iterate Iterate
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Case Study: Training Data Development for GNNs
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Graph structure learning (GSL): Optimizing both the graph structure and the corresponding 
GNN representations.

[1] Zhou, Zhiyao, et al. OpenGSL: A Comprehensive Benchmark for Graph Structure Learning. Arxiv, 2023.

Pre-training and Iter-training involve a two-stage learning process, while co-training 
methods optimize graph and model jointly.
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Case Study: Training Data Development for GNNs
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OpenGSL: A comprehensive benchmark for graph structure learning. It provides a library and 
benchmarks the accuracy, efficiency, and memory consumption of 12 state-of-the-art GSL 
methods across 10 popular datasets of diverse types and scales.

[1] Zhou, Zhiyao, et al. OpenGSL: A Comprehensive Benchmark for Graph Structure Learning. Arxiv, 2023.
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Case Study: Training Data Development for GNNs
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[1] Zhou, Zhiyao, et al. OpenGSL: A Comprehensive Benchmark for Graph Structure Learning. Arxiv, 2023.

• Key findings and future directions 
• Homophily assumption: Increasing the homophily of the structure does not 

necessarily translate into improved performance. There is a need for rethinking the 
necessity of homophily in GSL.

• Generalization: The learned structures exhibit strong generalizability. This motivated 
the potential of developing more task-agnostic GSL methods.

• Efficiency: Most GSL methods are time- and memory-inefficient, some of which 
require orders of magnitudes more resources than vanilla GNNs, highlighting the need 
for more efficient GSL methods.

•  Open-source library
• https://github.com/OpenGSL/OpenGSL

https://github.com/OpenGSL/OpenGSL
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Case Study: Training Data Development for GNNs
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Subgraph selection: Selecting (personalized) subgraphs as inputs of GNNs can improve the 
learned representations.

[1] Tan, Qiaoyu, et al. Bring your own view: Graph neural networks for link prediction with personalized subgraph selection. WSDM, 2023.
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Case Study: Training Data Development for GNNs
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Graph augmentation: Generating synthetic graphs to create more training data for improving
the generalization of GNNs.

[1] Han, Xiaotian, et al. G-mixup: Graph data augmentation for graph classification. ICML, 2022.
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Case Study: Training Data Development for GNNs
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Graph augmentation: The design of synthetic data generation could be integrated with 
training algorithms (e.g., contrastive learning).

[1] Shi, Yucheng, et al. ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning. ECML-PKDD, 2023.
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Case Study: Training Data Development for GNNs
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Graph condensation: Learning a small, synthetic graph from a large, original dataset to train 
GNN models.

[1] Jin, Wei, et al. Graph condensation for graph neural networks. ICLR, 2022.
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Case Study: Training Data Development for KGs
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Knowledge Graph (KG) error detection: KG can have flaws as we often use automatic tools 
to construct KG.

[1] Dong, Junnan, et al. Active ensemble learning for knowledge graph error detection. WSDM. 2023.
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Case Study: Training Data Development for KGs
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Ensembling error detectors for KG error detection.

[1] Dong, Junnan, et al. Active ensemble learning for knowledge graph error detection. WSDM. 2023.
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Q & A
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Inference Data Development

Part 3

50
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Outline for Inference Data Development

51

1. Overview: Functional Roles Served in DCAI 

2. Granular Evaluator 
● In-Distribution 
● Out-of-Distribution 

3. Decision Interpreter
● Instance-Level
● Group-Level

4. Task Tuner
● Fine Tuning
● Prompt Engineering
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Inference Data in Conventional MCAI 

52

In MCAI, inference data is mainly used for overall evaluation on generalization – 

Inference Data

● Testing “in the wild” 
is super expensive;

● Need fast iterations 
for development;

● Serve as a useful 
indicator on model 
performance. 
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DCAI Needs More

53

The held-out data construction in MCAI has significant limitations in DCAI – 

A. Held-Out Data is Not 
Comprehensive

B. Held-Out Data Contains 
No Model Insights

C. Held-Out Data Cannot 
Tune for Tasks
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Evaluation Needs in DCAI

54

Face Recognition
● How should we 

know the model 

generalization 

performance for 

certain groups 

(e.g., race and 

gender)?

● How should we 

know the model 

robustness for 

prediction? 

● … … 
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Interpretation Needs in DCAI
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● How should we 

better understand 

the model decisions?

● How can we detect 

the model fairness 

for high-stake 

predictions?

● How can we acquire 

feedback for model 

calibration and 

refinement? 

● … … 

Limited Insights
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Task-Tuning Needs in DCAI
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● How should we 

interactively guide 

the model to 

accomplish some 

challenging tasks?

● How can we tune 

the model through 

inputs for different 

applications?

● … … 
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Granular Evaluator for DCAI
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Data Slicing
(In-Distribution)

Noise Injection
(Out-of-Distribution)
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SliceFinder
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[1] Chung, Yeounoh, et al. Slice finder: Automated data slicing for model validation. ICDE, 2019.

SliceFinder[1] is an interactive framework for finding interpretable slices of data.

BFS as a Lattice
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GEORGE
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GEORGE[1] uses standard approaches to cluster representations of a deep model in order to 
discover underperforming subgroups of data.

[1] Sohoni, Nimit, et al. No subclass left behind: Fine-grained robustness in coarse-grained classification problems. NeurIPS, 2020. 
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Random Noises
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Model predictions can be very brittle when evaluated with noisy data. 

Belinkov, Yonatan, and Yonatan Bisk. Synthetic and Natural Noise Both Break Neural Machine Translation. ICLR, 2018.



Data-centric AI Tutorial (KDD’23)

Adversarial Noises
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Deliberate noises can be used to construct adversarial samples for robustness evaluations.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 
"Explaining and harnessing adversarial examples.", 2014.

Ribeiro, Marco Tulio, et al. "Semantically equivalent 
adversarial rules for debugging NLP models.", 2018.

Image Classification

Visual Question Answering
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Calibrated Noises
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Calibrated noises can be used to enhance data privacy for security evaluations.

Laplace Mechanism for Achieving 

Differential Privacy
(Noise is added to the output of a model)



Data-centric AI Tutorial (KDD’23)

Refined Evaluations in DCAI (1/2)

63

DCAI needs evaluations from specific aspects – DecodingTrust [1] framework for GPT Model

[1] Wang, Boxin, 
et al. 
DecodingTrust: A 
Comprehensive 
Assessment of 
Trustworthiness in 
GPT Models., 
2023.
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Refined Evaluations in DCAI (2/2)
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Some other important aspects of GPT models in the paradigm of DCAI – 
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Decision Interpreter for DCAI

65

Algorithmic Recourse
(Instance-Level)

Distribution Shift
(Group-Level)
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Recourse Formulation
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Consider a binary classification scenario (w.l.o.g.) with model  𝑓𝜃: ℝ
𝑑 ➝ {−1, 1}

Find an in-distribution sample 

which is close to the query and 

has the preferred output.

Granger Causality Assumption
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Recourse for Interpretation

67

Recourse suffers from “Rashomon Effect”, 
where diversity is of great importance. 

Mothilal, Ramaravind K., et al. Explaining machine learning classifiers 
through diverse counterfactual explanations. FAccT, 2020. 

Recourse helps detect fairness 
issues, where unethical 

correlations need to be avoided.

Yang, Fan, et al. Generative counterfactuals for 
neural networks via attribute-informed 

perturbation. SIGKDD Explorations, 2021.
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Recourse Rule Set
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AReS[1] can provide an interpretable summary of recourses for the entire population with 
emphasis on specific subgroups of interest. 

[1] Rawal, Kaivalya, et al. Beyond individualized recourse: Interpretable and interactive summaries of actionable recourses. NeurIPS, 2020.
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Observability of Data Shifts

69

● The world is changing, and data is changing; 

● But ML models stay the same without 
automatic adaptation (for now).
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Monitoring of Data Shifts
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A simple yet effective way to empirically detect data shifts during inference – 

Rabanser, Stephan, et al. Failing loudly: An empirical study of methods for detecting dataset shift. NerrIPS, 2019.
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Task Tuner for DCAI (LM)

71

Fine Tuning Prompt Engineering
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Fine Tuning LM
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Three common ways for tuning Language Models – 

https://magazine.sebastianraschka.com/p/finetuning-large-language-models
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General Rule of Thumb
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Computational and modeling performance trade-offs for various tuning approaches – 

https://magazine.sebastianraschka.com/p/finetuning-large-language-models
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Parameter-Efficient Fine Tuning

74

Main Idea – Only finetune the newly added parameters to make the LM perform better.

[1] Hu, Edward J., et al. Lora: 
Low-rank adaptation of large 

language models. 2021.

Low-Rank Adaptation

[2] Houlsby, Neil, et al. 
Parameter-efficient transfer 

learning for NLP. 2019.

Adapter
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Parameter-Free: LLM Prompt Engineering

75

LLMs are extremely powerful, and they just need some “instructions” on how to achieve – 
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Prompt Engineering Example (1/3)

76

The student's solution is correct. 
They correctly identified the costs 

for land, solar panels, and 
maintenance, and calculated the 

total cost for the first year of 
operations as a function of the 

number of square feet.
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Prompt Engineering Example (2/3) 

77



Data-centric AI Tutorial (KDD’23)

Prompt Engineering Example (3/3) 

78

To calculate the total cost for the first year of 
operations, we need to add up the costs of land, 
solar panels, and maintenance.

Let x be the size of the installation in square feet.

Costs:
1. Land cost: $100 * x
2. Solar panel cost: $250 * x
3. Maintenance cost: $100,000 + $10 * x

Total cost: $100 * x + $250 * x + $100,000 + $10 
* x = $360 * x + $100,000

Is the student's solution the same as the actual 
solution just calculated:
No

Student grade:
Incorrect
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Soft Prompting Technique

79

Soft prompts can use to reduce the performance variance from LLM-generated prompts, as 
the quality of LLM-generated prompts are hard to guarantee.

Chuang, Yu-Neng et al. Spec: A soft prompt-based calibration on mitigating performance variability in clinical notes summarization. Arxiv, 2023.
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Q & A
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Data Maintenance & DCAI Benchmark

Part 4

81
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Outline for Data Maintenance & DCAI Benchmark

82

1. Overview: Functional Roles Supporting DCAI 
2. Human Understanding

● Input Space Understanding

● Latent Space Understanding

● Output Space Understanding

3. Data Quality 
● Impact of data quality

● Example on natural language data

● Example on tabular data

4. Benchmark 
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DCAI Needs Supports

83

Enabling human awareness on data is crucial for supporting DCAI. 

A. Human Understanding B. Quality Control C. Benchmark
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Understanding Needs in DCAI

84

Input Space Latent Space Output Space

● Data Distribution

● Data Value 

● Model Correctness

● Model Robustness

● Model Capability

● Result Correctness

● Future Direction

● How do we understand each step of AI solution from data perspective?
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Data Quality Needs in DCAI
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Assessment

Assurance

Correctness Completeness Consistency Reliability

CurationAnnotation Alignment Verification

● How data quality issue impact the machine learning solution?

● How to address the quality problems on the fly?
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Benchmark Needs in DCAI
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Data-centric

● How do we conduct benchmark to better understand the latest progress?
● What can we learn from DCAI current benchmarks?

Model-centric
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Input Space Understanding

87

Deng, Dazhen, et al. "Dashbot: Insight-driven dashboard generation based on deep reinforcement learning." IEEE Transactions on Visualization and Computer Graphics 29.1 (2022).

● Automated Visualization

● Dashboard generation as Markov Decision Process
○ State: 
○ Action:
○ Reward: 

■ Diversity: Diversify chart types.
■ Parsimony: Use as less chart as possible.
■ Insight: Provide as much insight as possible.
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Input Space Understanding

88

Deng, Dazhen, et al. "Dashbot: Insight-driven dashboard generation based on deep reinforcement learning." IEEE Transactions on Visualization and Computer Graphics 29.1 (2022).

Action Generation Process

Exploration Process Controlled by Actions and Parameters
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Input Space Understanding

89

Deng, Dazhen, et al. "Dashbot: Insight-driven dashboard generation based on deep reinforcement learning." IEEE Transactions on Visualization and Computer Graphics 29.1 (2022).
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Input Space Understanding
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Sim, Rachael Hwee Ling, Xinyi Xu, and Bryan Kian Hsiang Low. "Data valuation in machine learning:“ingredients”, strategies, and open challenges." Proc. IJCAI. 2022.

● Data Valuation:
○ Ingredients Given for the problem:

■ A dataset, a learning algorithm and a performance metric.

○ Goal:
■ Evaluate the value of individual data instances of the dataset.

○ Usage: (1) Find core insight of the dataset. (2) Domain adaptation. (3) Corruption filtering.
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Input Space Understanding

91

Yoon, Jinsung, Sercan Arik, and Tomas Pfister. "Data valuation using reinforcement learning." International Conference on Machine Learning. PMLR, 2020.

● Data Valuation with Reinforcement Learning:
○ State: A batch of training samples
○ Action: Probability distribution for sample training data
○ Reward: Loss on validation dataset
○ Transition Dynamic: Changes of the predictor
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● Understand complex models via heuristic score generation.
● Heuristic Scores:

○ Attention / Data Dependency:
■ Evaluate dependencies between attentions & content dependency 

○ Knowledge Consistency:
■ Evaluate depth of modeled relationship & knowledge dispersion with respect to layers.

Latent Space Understanding

92

Vig, Jesse, Machine Learning, and Yonatan Belinkov. "Analyzing the Structure of Attention in a Transformer Language Model." ACL 2019 (2019): 63.
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Latent Space Understanding

93

Vig, Jesse, Machine Learning, and Yonatan Belinkov. "Analyzing the Structure of Attention in a Transformer Language Model." ACL 2019 (2019): 63.

● Understand complex models via heuristic score generation.

Model Variability:

Focuses on current token. Focuses on previous token. Focuses words in repeated phrases

Focuses Attentions Disperse Attentions Long-distance Attentions
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Latent Space Understanding

94

Vig, Jesse, Machine Learning, and Yonatan Belinkov. "Analyzing the Structure of Attention in a Transformer Language Model." ACL 2019 (2019): 63.

● Understand complex models via heuristic score generation.

Mean Attention Distance

Attention Variability Mean Attention Entropy

Layer Attention Distance

Deeper Layer…
● Higher variability 

→ content-dependent relationships
● Higher entropy

→ disperse attention
● Higher attention distance

→ capturing longer-distance relationships
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Output Space Understanding

95

Görtler, Jochen, et al. "Neo: Generalizing confusion matrix visualization to hierarchical and multi-output labels." Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022.

● Understanding performance metric for real-world scenario.
○ How to map the confusion matrix to concepts behind training labels?

● Real-world labels usually come with hierarchies.
○ Intuition: Confusion matrices can be understood as probability distributions.
○ Row/Column-wise normalization.
○ Conditional probability distribution between hierarchies.
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Output Space Understanding

96

Görtler, Jochen, et al. "Neo: Generalizing confusion matrix visualization to hierarchical and multi-output labels." Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022.

● Three steps to transform multi-output labels
○ Conditioning: Primes a probability distribution on given values
○ Marginalization: Discard variables of multivariate distributions that are not interested
○ Nesting: Investigate multiple labels simultaneously
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Output Space Understanding

97

Görtler, Jochen, et al. "Neo: Generalizing confusion matrix visualization to hierarchical and multi-output labels." Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022.

● Normalizing confusion matrix reveals hidden confusions.
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Impact of Data Quality 

98

● Data quality impact on machine learning solution.
○ Pollution sophistication

i. Complexity of polluted data instances.

○ Model complexity

i. Capability of algorithm to handle low quality data.

○ Quality dimensions

i. Number of quality issues in the dataset.

● Desired Data Quality Dimensions:
○ Consistent representation: Semantic uniqueness of features.

○ Completeness: Low missing ratio of the data.

○ Feature accuracy: Low deviation of feature value from ground truth.

○ Target accuracy: Low deviation of label value from ground truth.

○ Uniqueness: Less duplicated instances.

○ Target class balance: Balanced class distribution.

Budach, Lukas, et al. "The effects of data quality on machine learning performance." arXiv preprint arXiv:2207.14529(2022).
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● Impact of individual data quality dimension: Example on credit score prediction.

Impact of Data Quality 

99

Budach, Lukas, et al. "The effects of data quality on machine learning performance." arXiv preprint arXiv:2207.14529(2022).
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● Example of a 1.6TB Composite Multilingual Dataset

Huggingface

Web ARChive

GitHub Code

Multiple Data Sources

OSCAR

Laurençon, Hugo, et al. "The bigscience roots corpus: A 1.6 tb composite multilingual dataset." Advances in Neural Information Processing Systems 35 (2022): 31809-31826.

Example on Natural Language Data
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Example on Natural Language Data

101

● Quality Improvement Pipeline of the 1.6TB Composite Multilingual Dataset

Dataset 
Merging

Document
Cleansing

Document
Filtering

● HTML cleansing
● Sentence Splitting
● Remove references
● Deduplicate documents

● Dataset Pivoting
● Merging by version
● Remove low incidence 

of natural language
● Remove dataset with 

high n-gram repetition
● Remove dataset < 2MB

● Word repetition ratio
● Special character ratio
● Low closed class word ratio
● Flagged word ratio
● Perplexity value
● Insufficient word count

Laurençon, Hugo, et al. "The bigscience roots corpus: A 1.6 tb composite multilingual dataset." Advances in Neural Information Processing Systems 35 (2022): 31809-31826.
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Example on Tabular Data 

102

Hulsebos, Madelon, Çagatay Demiralp, and Paul Groth. "Gittables: A large-scale corpus of relational tables." Proceedings of the ACM on Management of Data 1.1 (2023): 1-17.

● Data processing pipeline:
○ Data parsing: Remove “bad” lines and realign headers.

○ Table filtering: Remove tables with extreme small size and undefined columns.

○ Content curation: Remove offensive contents and anonymize tables.

○ Data annotation: Semantic/syntactic alignment and annotate with general resources.
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Hulsebos, Madelon, Çagatay Demiralp, and Paul Groth. "Gittables: A large-scale corpus of relational tables." Proceedings of the ACM on Management of Data 1.1 (2023): 1-17.

● Lesson learned from data quality summary
○ Annotation with semantic meaning leads to more annotations per table.

○ Cosine similarity reflects the confidence of annotation.

○ Model train with GitTables has better predictive performance than the baseline.

Example on Tabular Data 
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DCAI Benchmarks

104

● Benchmarks from different perspectives
○ MLPerf: Model-centric Benchmark

■ Application-driven
■ Computation focused
■ Assumption on good quality of data

○ DataPerf: Data-centric Benchmark
■ Application agnostic
■ Data quality focused
■ Minimum assumption on ML model

Reddi, Vijay Janapa, et al. "Mlperf inference benchmark." 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020.
Mazumder, Mark, et al. "Dataperf: Benchmarks for data-centric ai development." arXiv preprint arXiv:2207.10062 (2022).
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DCAI Benchmarks

105

● Lesson Learned from Existing Benchmarks
○ Data-centric AI is an interdisciplinary effort.

■ Domains across Database, Biomedical, CG, Security…
○ Popularity data modality for benchmark

■ Tabular > Image > Time Series > Audio > Graph
○ Attention received by goals:

■ Training > Maintenance > Evaluation

Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.
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Q & A

106
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Data bias and fairness

Part 5

107
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Data Quality: Bias and Fairness

108

1. Distribution shift

2. Fairness

3. Fairness under Distribution Shift
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Distribution Shift

109

When does distribution shift happens?

Examples
▪ Different positions/hospitals
▪ Different experiments
▪ Different time periods
▪ Different devices

[1] Koh, Pang Wei, et al. Wilds: A benchmark of in-the-wild distribution shifts. ICML, 2021.
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Distribution Shift
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Distribution Shift v.s. IID Assumption

Training Testing
Independently 
and Identically 

Distributed 

Source: MNIST Test: SVHN
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Distribution Shift

111

Types of shifts

● Covariate shift
● Label shift
● Demographic shift
● Compound shift

Goal: Performance transfer from source to target dataset

Shift type Shift variable Description

Covariate shift Input

Label shift Output

Demographic shift Indicator
(e.g.,sensitive attributes)
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Domain Generalization (DG)

112

Taxonomy of Domain Generalization Methods [1]

[1] Wang, J., et al., Generalization to Unseen Domain: A Survey on Domain Generalization. TKDE, 2022.
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1. Data Augmentation
● Create out-of-distribution training data based on transformation of original data

E.g., Image Simulation [1]

2. Data Generation
● Generate diverse training data to help generalization

E.g., MixStyle [2]

Data-centric Manipulation for DG

113

[1] Tobin, J., et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS, 2017.
[2] Zhou, Kaiyang, et al. "Domain generalization with mixstyle." arXiv preprint arXiv:2104.02008 (2021).
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Domain Randomization for Transferring Deep Neural Networks from 
Simulation to the Real World

● Core Idea
○ Create diverse training images from the simulated environment via Domain Randomization
○ Task: object detection (localization)

● Domain Randomization
Data augmentation based on the 7 random simulated variability

1. Number and shape of distractor objects on the table

2. Position and texture of all objects on the table

3. Textures of the table, floor, skybox, and robot

4. Position, orientation, and field of view of the camera

5. Number of lights in the scene

6. Position, orientation, and specular characteristics of the lights

7. Type and amount of random noise added to images

114

[1] Tobin, J., et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS, 2017.
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Domain Randomization for Transferring Deep Neural Networks from 
Simulation to the Real World

● Experiment and Ablation Study
○ The efficacy of different randomizations varies for the different target object
○ The number of augmented data is crucial

115

[1] Tobin, J., et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS, 2017.
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Domain Randomization for Transferring Deep Neural Networks from 
Simulation to the Real World

● Experiment and Ablation Study
○ Adding noise to simulated images only provides neglectable diversity
○ Texture randomization shows effectiveness with increasing amount

116

[1] Tobin, J., et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS, 2017.
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Domain Generalization with MixStyle

● Core Idea
○ Observation 1: visual domain is closely related to 

image style
○ Observation 2: image style information is captured 

by the bottom layers of CNN
○ Goal: generate normalized style images for training 

a generalized model

117

[1] Zhou, Kaiyang, et al. "Domain generalization with mixstyle." arXiv preprint arXiv:2104.02008 (2021).
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Domain Generalization with MixStyle

● MixStyle
○ Normalize styles from different domain 

images of the same class in latent space
○ The reference instance batch can be 

obtained by:
a) Shuffle with domain label

b) Random shuffle 

118

[1] Zhou, Kaiyang, et al. "Domain generalization with mixstyle." arXiv preprint arXiv:2104.02008 (2021).
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Domain Generalization with MixStyle

● Experiment Results
○ MixStyle shows promising efficacy on image
○ MixStyle is hard to be used for other data types

■ The idea relies on the characteristics of CNN

119

[1] Zhou, Kaiyang, et al. "Domain generalization with mixstyle." arXiv preprint arXiv:2104.02008 (2021).
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Challenges
• Different graphs typically have different numbers of nodes

• Even for graphs with the same number of nodes, there lacks a node-level 
correspondence.

Graph Augmentation via Graph Mixup

120

?
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Mixup for Node and Graph Classification

● Although graphs are not well-aligned, the learned representations 
of two graphs are well-aligned and can be interpolated directly.

● A straightforward way to apply Mixup to GNNs is directly mix the 
latent representations of two graphs.  

121

[1] Wang, Yiwei, et al. Mixup for node and graph classification. WWW, 2021.
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G-mixup: Graph Data Augmentation

● The real-world graphs within one class can be regarded as generated from the 
same generator (i.e., graphon).

● A graphon can be thought of as a probability matrix, where each represents the 
probability of edge between two nodes.

● The graphons of different graphs is regular, well-aligned, and is defined in 
Euclidean space.

122

[1] Han, Xiaotian, et al. G-mixup: Graph data augmentation for graph classification. ICML, 2022.
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G-mixup: Graph Data Augmentation

Mixup the generator (i.e., graphon) of graphs, mix up the graphons of 
different classes, and then generate synthetic graphs.

123
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Graph Mixup with Soft Alignments

124

Given a pair of graphs, S-Mixup consists of the following two steps:
1. Soft alignments
2. Mixup with the assignment matrix

[1] Ling, Hongyi, et al. Graph Mixup with Soft Alignments. ICML, 2023.
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Graph Mixup with Soft Alignments

125

Node-level Correspondences Matters

Original graph data Random S-Mixup

If we use random node order to mix graphs, the red nodes no longer form a cycle motif.
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Graph Mixup with Soft Alignments

126
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Graph Mixup with Soft Alignments

127

S-Mixup can improve the generalization of graph neural networks.
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Unfairness

● Reason of unfairness & why it is hard to address unfairness problem
○ Dataset exists bias, and the model training amplify model bias
○ Black-box nature makes it challenging to detect the model bias
○ Interpretability is a useful tool

128
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Mitigation Methods

● Three categories based on machine learning life-cycle
○ Pre-processing tries to debias and increase the quality of training set
○ In-processing adds auxiliary regularization term to the overall objective function during 

training, explicitly or implicitly enforcing constraints for certain fairness metric
○ Post-processing is performed after training to calibrate the predictions of trained models

129
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Automated Fair Graph Augmentation

130

[1] Ling, Hongyi, et al. Learning fair graph representations via automated data augmentations. ICLR, 2023.
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Automated Fair Graph Augmentation

131

Augmentation module
• Edge perturbation: removing existing edges and adding new edges

• Node feature masking: setting some values of node feature matrix to zero
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Automated Fair Graph Augmentation

132
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Automated Fair Graph Augmentation

133

Accuracy-fairness trade-off (Pareto front curves)

● The upper-left corner point represents the ideal performance, i.e., highest accuracy and 
lowest prediction bias.
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Robust Fairness under Distribution Shift

Fairness is not transferable under distribution shift

134

[1] Chen, Yatong, et al. Fairness Transferability Subject to Bounded Distribution Shift. NeurIPS, 2022.
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Demographic Shift

135

● Many behaviors under distribution shift
○ Performance is only one single metric
○ Many other behaviors: e.g., fairness

   * Fairness metric is more sensitive to distribution shift

● An example with demographic shift (sensitive attribute distribution shift)
○ Fairness performance can drop significantly
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Robust Fairness under Distribution Shift

136

Fairness under distribution shift
● What are the conditions guarantee such robust fairness?

 
Take DP as an example
● Low DP at source dataset
● Low average prediction gap between source/target dataset at the same sensitive group

Loss function-agnostic
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Robust Fairness under Distribution Shift

137

Rethinking distribution shift

Distribution shift                  Data Perturbation                Model Weight Perturbation
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Robust Fairness under Distribution Shift

138

How can we achieve low prediction gap for each demographic group?
● Weight perturbation (sharpness-aware minimization, SAM): bi-level optimization problem
● Can be accelerated with two forward-backward propagation

Model Weight Perturbation
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Robust Fairness under Distribution Shift

139

Robust Fairness Regularization (RFR)

Classification loss Low DP on source Low prediction gap
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Robust Fairness under Distribution Shift
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Synthetic distribution shift
● Low prediction bias at low-intensity distribution shift
● Comparable at high-intensity distribution shift
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Robust Fairness under Distribution Shift

141

Real distribution shift
● Low(comparable) prediction bias under temporal(spatial) distribution shift
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Q & A
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Data-centric AI In Industry

Part 6

143
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Search and Recommender Systems in Industry

Search and 
Recommendation 
are Everywhere

144
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Web Search
Search for specific information through 
the web search engine

Search and Recommender Systems in Industry

*https://www.autospyders.com/how-to/technology/top-10-search-engines-to-make-your-career-sear
ching-for-information-in-cyberspace_742.php

*https://60secondmarketer.com/2021/04/05/the-top-25-social-media-net
works-you-should-know-in-2021/

Online Social Networks
Search and Recommend with social 
networks for items such as news, 
jobs, videos, as well as online 
advertising

Online E-commerce Marketplace
Buy & Sell Goods and / or Services

* https://www.danhock.com/posts/the-future-of-marketplaces
* https://internetdevels.com/blog/start-online-marketplace-website
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https://www.autospyders.com/how-to/technology/top-10-search-engines-to-make-your-career-searching-for-information-in-cyberspace_742.php
https://www.autospyders.com/how-to/technology/top-10-search-engines-to-make-your-career-searching-for-information-in-cyberspace_742.php
https://60secondmarketer.com/2021/04/05/the-top-25-social-media-networks-you-should-know-in-2021/
https://60secondmarketer.com/2021/04/05/the-top-25-social-media-networks-you-should-know-in-2021/
https://www.danhock.com/posts/the-future-of-marketplaces
https://internetdevels.com/blog/start-online-marketplace-website
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Query

Query 
Understanding

UserItem

User 
Understanding

Item 
Understanding

Candidate 
Generation

Ranking

Search and Recommender Systems in Industry
Search Specific

User

Online Assistance
query reformulation, smart compose, 

conversational search, …
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Ranking in Search & Recommendation

User Item

User Interests Item Properties

User Features
● Profile (interests, skill, title, etc.)
● Past Behavior

Item Features
● Attributes (title, description, etc.)
● Past Engagement

Ranking Model

Context

● Data Flow in Search & 
Recommendation Ranking

Context Features
● Query
● Device, Weekday

○ Offline
■ Generate offline features
■ Generate offline train / test 

data to build ranking models
■ Model Training

○ Online
■ Generate online features
■ Serve ranking models online 

to generate ranking results

147
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General Data System for Search and Recommendation

User A

Offline Feature 
Storage

Feature  
Generation

Model Evaluation 
& Selection

0.3

0.6

Data 
Logging

Logging 
Data 

Processing 
& Storage Model Training

Feature 
Producers

w/wo
User Query

Label  
Generation

Train / Test Data  
Generation

Online Scoring & 
Ranking

Real-time Feature  
Generation

… …

0.05

Request

Online

Offline

Items

Model Deployment

Engage
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Data Logging

User A

Landing Page 
EngagementView

Convert 
(e.g., book, 
purchase) 

Logging 1 - Query 
and User Context

Logging 2 - Ranking Context

● A Toy Example of Data Logging in Search & Recommender Systems

0.5

0.2

0.1

0.1

0.05

…

ClickLogging 3 - 
Engagements

Data that do not require online logging
● User Profiles
● Item Properties

Ranking Score

Cancel / 
Return

Web Search / Online Social Networks Online E-Commerce / Ads
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Training Data Generation - Features

User Item

User Features Item Features

● Profile (interests, 
skill, title, etc.)

● Past Behavior

● Attributes (title, description, review, etc.)
● Past Engagement

Context

● Query
● Device, Weekday
● …

● Model user related features to 
capture user interests

● Model item related features to 
capture item properties

● Model context related features to 
capture product context

User Raw Data Item Raw Data

Feature Transformation

Context Features

Context Raw Data

150
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Training Data Generation - Labels

Click

Output

Landing Page 
Engagement

Purchase 
Request Purchase Payment Page Cancellation

Loss 1 Loss 2 Loss 3 Loss 4 Loss 5 Loss 6

x x x x xσ σ σ σσ

● A Toy Example

● Single Task
○ P(Purchase | View)

■ Label Attribution: How to attribute “Purchase” label to the previously “viewed” / “clicked” Items 
that are later purchased by the user

● Multi-task
○ Model different types of losses together

■ P(Click | View)
■ P(Purchase | Click)
■ P(Cancellation| Purchase)

151

View
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Offline / Online Discrepancy
● Testing Data

○ A good representation of training data (of course) and real traffic
■ Weekday / Weekend Effect
■ Seasonality
■ Big Events

○ Avoid information leaking

● Model Bias
○ Train / Test data for the next model is generated from previous model’s 

serving data
○ The rich get richer: how do we know whether an item is good if it never 

had the chance to serve to the user

● Feature Generation Discrepancy
○ Synced Feature Producers

● Model Scoring Discrepancy
○ TF Versions, …
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The Various Data Types
● Structured Data

○ Title, Price, Location, Date

● Text Data
○ Comments, Descriptions, Reviews

● Image / Video Data

● Engagement Data
○ Impressions, Clicks, Purchases

*https://www.visitlongbeach.com/about-long-beach/special-offers/

An Example of Activity Search / Recommendation

153
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Pretraining for Ranking: Effectiveness vs Efficiency

Pre-training for Ranking: Foundation Model + Task-specific Model

Large Language Models (LLM)

*https://lifearchitect.ai/chatgpt/

○ Multimedia (Text, Image, …) Data are in general 
computationally heavy

○ Pretrained foundation model v.s. Task-specific model
■ Training with different data focus
■ Fine-tuning pretrained model in task-specific model

○ Balance on relevance performance & serving latency
■ Pretrain LLM with domain specific data and 

flexible structure

154

https://lifearchitect.ai/chatgpt/
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Pre-training for Ranking: Foundation Model + Task-specific Model

MLP Layer hidden layer

target score

Learning 
To Rank 
Layer

LTR loss

targetn scoretarget2 score
…...

d ⨉ m1Word 
emb 
matrixWord 

embedding 
layer

d ⨉ n1 d ⨉ n2d ⨉ m2

Text 
embedding 
layer

Pretrained 
LLM

Text emb 
vector

Pretrained 
LLM

Pretrained 
LLM

Pretrained 
LLM

Raw text source_field1 target_field1 target_field2source_field2

Interaction 
Layer

deep ftrs

feature 
normalization

handcrafted ftrs

* https://github.com/linkedin/detext

Pretrained LLM on 
domain-specific 
data
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https://github.com/linkedin/detext
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Pretrained Model with Multi-modal Sequential Data

● Text: Sequence of Words ● Image: Sequence of Pixels ● Video: Sequence of Images

● Sequence of Engagements

L1 L5 L2 L3 L4 L4

View Click View Click Click Purchase 
Request

L4

Purchase

L4 Quit

L4
Cancel/
Reject/ 
Ticket

L4

Review

L4

Cancel/
Reject/
Ticket

● Challenges: Engagement Sequence v.s. Word / Image Sequence
○ Semantic Smoothness
○ Noise and Randomness
○ Data Cleaning and Denoising
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Data Dynamics: Global Model + P13n Models

Data for User Features
● Profile (interests, skill, title, etc.)
● Past Behavior

Data for Item Features
● Attributes (title, description, etc.)
● Past Engagement

What’s the feature in finest granularity 
that represents a user

What’s the feature in finest granularity 
that represents an item

User

Item

Use a feature Id to 
represent a user

Use a feature Id to 
represent an item
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● Use a feature id to represent a user (or an item)

User Features
● Profile (interests, skill, title, etc.)
● Past Behavior
● User Id

Item Features
● Attributes (title, description, etc.)
● Past Engagement
● Item Id

● How to scale up the training with feature coefficients in scale of millions or billions or beyond?
○ Millions of user ids
○ Millions of item ids

Global Model + P13n Models

Data Dynamics: Global Model + P13n Models
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Data Dynamics: Global Model + P13n Models

Global Model P13N Model

*https://github.com/linkedin/gdmix

Global 
Model

P13N - 1

P13N - 2 

P13N - 3

P13N - 4

P13N - n

…

An Example of GDMix Framework

When this setup is beneficial?
● The P13n id features are informative but 

dynamic thus requiring frequent update 
● The training / serving system does not support 

the update frequency if using a single model 
for both global and p13n id features.

● Otherwise …

159

Logistic 
Regression

Deep Model

Custom 
Models

Logistic 
Regression
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An Overview of The Data Framework 
● Foundation Model

○ Non-task specific
○ Deal with large-scale complicated / unstructured data (text, image, video, engagement 

sequence) 
○ Updated in low frequency (e.g., quarterly or yearly)
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● Global Model
○ Task-specific
○ Deal with structured data (and / or finetune pre-trained data patterns from foundation 

model) with stable patterns
○ Updated in medium frequency (e.g., monthly or bi-weekly)

● P13N Models
○ Task-specific
○ Deal with structure data (and / or finetune pre-trained data patterns from foundation model) 

with dynamic patterns
○ Updated in high frequency (e.g., hourly or daily)
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An Overview of The Data Framework 

Global Model

Foundation Model

P13N - 1

P13N - 2 

P13N - 3

P13N - 4

P13N - n

…
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Fairness and Stability

● Fairness

● Stability
○ Minor randomness can lead to potential fairness impact if two entities are nearly equally qualified.
○ A toy Example

■ Ranking model can rank one item higher than the other one, even though their difference can 
be minor

■ The ranking decision can then lead to rich get richer and poor get poorer
○ Explore / Exploit to offer more opportunities to under-represented groups
○ Ranking Ensemble to mitigate the bias

Two entities who are equally qualified should have equal access to opportunity.
● User Side

○ Job Recommendation Opportunities

● Item Side 
○ Host / Product Visibility Opportunities
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Search and Recommender Systems in Industry

Web Search Online Social 
Networks

E-commerce 
Systems

● From online world to physical world, how to collect more offline data 

● How to understand the user intent through their sparse (for e-commerce) and 
dynamic but crucial online / offline engagement data

● How to capture the journey of a user across online and offline
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Q & A
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Summary and Future Directions

Part 7
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Summary

• What is data-centric AI (DCAI)? 
• DCAI is the discipline of systematically engineering the data used to build an AI 

system.
• Why DCAI? 

• Abundant and high-quality data is the driving force for almost every AI success, 
including LLMs.

• We are witnessing various DCAI initiatives across academia and industry, such as 
the exponentially growing research papers, competition, course, and AI startups.

• Takeaways 
• Our tutorial summarized and discussed the definition & need of data-centric AI, 

followed by data-centric AI techniques for training data development, inference 
data development, and data maintenance & benchmarks. We further discussed 
fairness and bias in data, and data-centric AI in industry.

166



Data-centric AI Tutorial (KDD’23)

Future Directions

Cross-task automation: Can we jointly optimize tasks aimed at different goals, ranging from 
training data development to inference data development and data maintenance.

Data-model co-design: Can we co-design data and models towards better performance?

Debiasing data: How can we mitigate bias for the tasks under the three data-centric AI goals? 
There are still room for improvement.

Tackling data in various modalities: How can we effectively deal with data in various formats, 
such as graph and time-series?

Data benchmarks development: Can we develop a more unified data benchmark?
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Thank you!

168

We hope our tutorial can serve as source of inspiration and push forward the direction of DCAI!
Tutorial website: https://dcaitutorial.github.io/
Feel free to ask any questions!

Data-centric AI SurveyData-centric AI Perspectives GitHub Resources

https://dcaitutorial.github.io/
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